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This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

I. INTRODUCTION reasonably well, and to prove a theorem about the
model. The theorem is that at sufficiently low densities,
transport does not take place; the exact wave functions
are localized in a small region of space. We also obtain
a fairly good estimate of the critical density at which the
i aim..:..1 0. theorem fails. An additional criterion is that the forces

NUMBER of physical phenomena seem to involve
quantum-mechanical motion, without any par-



Conducao em metais
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A localizacao ocorre quando um
eletron se enlaza com uma impureza

*Ligado a um atomo (GAP)
Anderson transition
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* Scattering

Muitos scatterings de uma onda podem
aumentar os efeitos de interferencia até
localizar espacialmente um eletron

» Confinamento numa regiao
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FIG. 1. Conduectivity as a funection of reciproeal
temperature for the lower oxides of titanium and
vanadium. Measurements were made along the (100]
direction in VO, and along the ¢ axis in V,0, and VO,



Conducao em metais na presenca de desordem

Vix) Phil. Trans. R. Soc. Lond. A (1998) 356, 5-22
We ak t Potencial periodico
localization 3353 5 6 3 AR s D i (D R i

1

vix) Potencial aleatorio
|| i
(b) L

W

v | I 1 L 1 I | ¥ Onda estendida

Metal

Nf —

: * Onda Estendida

i Metal sujo

7\"/\ 1 1 //\"-——-

e ——— * Onda localizada

- - [solante




Localizacao de Anderson
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Experimentos
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FIG. 1. Measurements of coherent backscattering for two dif-
ferent samples. Open symbols: R700 with an average particle
diameter of 250 nm which yields k€* = 2.5. Closed symbols: Ti-
Pure with an average diameter of 540 nm and k€¢* = 6.3. All
measurements were done with circularly polarized light at a
wavelength 277/k = 590 nm. The insets show electron micro-
graphs of R700 and Ti-pure.
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FIG. 2 (color online). Path length distributions from R700,
R902, and Ti-Pure. The experimental results are compared to
diffusion theory including absorption (full line). In (a), one can
see that the data from Ti-Pure (L = 2.5 mm, D = 22 m?/s,
€, = 2600 mm, n = 1.28) closely follow the diffusion fit, show-
ing an exponential decay at long times. Part (¢) in contrast shows
strong deviations from the diffusion fit for R700 (L = 1.48 mm,
D =15 mz/s, €, = 340 mm, n = 1.55), with a clearly nonex-
ponential decay at long times. These deviations can be explained
by a time dependent diffusion coefficient in the sample. An
intermediate case is shown in part (b) from R902 (L = 1.51 mm,
D = 13 m?/s, £, = 380 mm, n = 1.23), with a value of k€* =
4.3, where small deviations from the classical behavior can be
observed. The respective values of the absorption length are
indicated by the slope of the dashed lines.



Experimentos
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Figure 3. Anderson localization of
ultracold atoms. The atoms are held by

a matter waveguide that confines them
transversely to the z-axis, but lets them
travel freely along z. A laser beam passing
through a thin aperture (elongated in the
Z direction) in a diffusive plate creates a
disordered intensity pattern that varies
rapidly along z and smoothly perpendicu-
lar to it. When a small Bose-Einstein con-
densate, initially confined along z, is
released in the disordered potential, its
expansion stops after about 0.5 s, after
which a stationary density profile with
exponentially decaying wings emerges.
The semilog plots of the profiles at times
0.85s, 15, and 2 s confirm the localization.



Experimentos

Cold
Atoms
2D

El Main lattice (periodic)

Secondary lattice (periodic)

Bichromatic lattice (nonperiodic)

@ e ®e e 6 &

®
@
o)
(O]
o
Lo
-
L= 8

Transport ‘ Localization

Figure 4. A bichromatic lattice simulates solid-state model. Loaded in a laser standing wave, an ultracold atom (blue) experiences a
periodic potential. (a) The tunneling energy J can be controlled by changing the intensity of the main standing wave. A second, weaker
optical lattice with an incommensurate spacing breaks the translational invariance and scrambles the site energies, as in the original
solid-state model introduced by Philip Anderson. (b) Time-resolved images of almost noninteracting potassium-39 atoms. The atoms
are first loaded into a few central sites of the bichromatic lattice and then observed diffusing into that nonperiodic structure. An in-
crease in disorder leads to a decrease in diffusion and eventually its absence when the amount of disorder W becomes on the order of 1.
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Figura 2 | Evolution of the atomic cloud for two different amplitudes of the disorder. a, Plots of the column density in the y-z plane, as observed by
fluorescence imaging along the x axis (Fig. 1a) at various delays t — & after application of the disorder. For a weak disorder (Vi /h = 135 Hz), we observe an
expansion leading to the disappearance of any observable atomic density for times larger than 1.2 5. For a strong disorder (Vi /h — 680 Hz), the atomic
cloud is still clearly visible after & 5, and the profile shows a steady peak around the origin, superposed on a slowly expanding component. As shown in
Fig. 2b, the expanding parts have a diffusive behaviour in both cases. b, Time evalution of the mean squared widths along y (blue circles) and = {red
diamonds) of the column density profiles, and theair fits by straight lines, yvielding the diffusion coefficients along v and 2. The anisotropy of the disorder,
visible on Fig. b, is reflected on the diffusion coefficients. €, Time evolution of the column density at the centre (green circles). The black line is a fit by the
function A+ Bf(t— &), where the asympotic value A is interpreted as the localized fraction fiy, (see text). The inset shows the same data plotted as a
function of 1/(t —1;), fitted by the black straight line whose intercept on the left axis yields fi,..




Conclusoes

*A localizacao de Anderson € um fendmeno ondulatorio que poderia descrever
transicoes nas propriedades de transporte de diferentes experiencias. Por ser um
efeito de interferéncia de onda, as limitacdes de coeréncia de fase sao um assunto
importante de estudo neste contexto.

*A dependéncia da dimensionalidade do sistema com a localizacao de Anderson
faz que este seja um fendmeno dificil de se observar para altas dimensoes,
fazendo diabolicamente complicada a tarefa de localizacao de elétrons num metal.

*Até agora, a localizacdao de Anderson foi observada em muitos sistemas
diferentes, sem duvida. Por outro lado, a observacao da transicao de Anderson em
Ssi € uma tarefa muito mais desafiadora.
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Transicao de Anderson

Teoria de dimensionamento -Scaling theory-
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